Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0295837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335214

RESUMO

Poly-(ADP-ribose) polymerases (PARPs) are a protein family that make ADP-ribose modifications on target genes and proteins. PARP family members contribute to the pathogenesis of chronic inflammatory diseases, including atherosclerosis, in which monocytes/macrophages play important roles. PARP inhibition is protective against atherosclerosis. However, the mechanisms by which PARP inhibition exerts this beneficial effect are not well understood. Here we show that in THP-1 monocytes, inhibition of PARP by olaparib attenuated oxidized low-density lipoprotein (oxLDL)-induced protein expressions of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing-3 (NLRP3) inflammasome components: NLRP3, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1. Consistent with this effect, olaparib decreased oxLDL-enhanced interleukin (IL)-1ß and IL-18 protein expression. Olaparib also decreased the oxLDL-mediated increase in mitochondrial reactive oxygen species. Similar to the effects of the NLRP3 inhibitor, MCC950, olaparib attenuated oxLDL-induced adhesion of monocytes to cultured human umbilical vein endothelial cells and reduced foam cell formation. Furthermore, olaparib attenuated the oxLDL-mediated activation of nuclear factor (NF)-κB through the oxLDL-mediated increase in IκBα phosphorylation and assembly of NF-κB subunits, demonstrated by co-immunoprecipitation of IκBα with RelA/p50 and RelB/p52 subunits. Moreover, PARP inhibition decreased oxLDL-mediated protein expression of a NF-κB target gene, VCAM1, encoding vascular cell adhesion molecule-1. This finding indicates an important role for NF-κB activity in PARP-mediated activation of the NLRP3 inflammasome. Thus, PARP inhibition by olaparib attenuates NF-κB and NLRP3 inflammasome activities, lessening monocyte cell adhesion and macrophage foam cell formation. These inhibitory effects of olaparib on NLRP3 activity potentially protect against atherosclerosis.


Assuntos
Aterosclerose , Inflamassomos , Ftalazinas , Piperazinas , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células Endoteliais/metabolismo , Adenosina Difosfato Ribose/metabolismo , Aterosclerose/metabolismo , Interleucina-1beta/metabolismo
2.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36945458

RESUMO

Hyponatremia and salt wasting is a common occurance in patients with HIV/AIDS, however, the understanding of its contributing factors is limited. HIV viral protein R (Vpr) contributes to HIV-associated nephropathy. To investigate the effects of Vpr on the expression level of the Slc12a3 gene, encoding the Na-Cl cotransporter, which is responsible for sodium reabsorption in distal nephron segments, we performed single-nucleus RNA sequencing of kidney cortices from three wild-type (WT) and three Vpr-transgenic (Vpr Tg) mice. The results showed that the percentage of distal convoluted tubule (DCT) cells was significantly lower in Vpr Tg mice compared with WT mice (P < 0.05), and that in Vpr Tg mice, Slc12a3 expression was not different in DCT cell cluster. The Pvalb+ DCT1 subcluster had fewer cells in Vpr Tg mice compared with WT (P < 0.01). Immunohistochemistry demonstrated fewer Slc12a3+ Pvalb+ DCT1 segments in Vpr Tg mice. Differential gene expression analysis comparing Vpr Tg and WT in the DCT cluster showed Ier3, an inhibitor of apoptosis, to be the most downregulated gene. These observations demonstrate that the salt-wasting effect of Vpr in Vpr Tg mice is mediated by loss of Slc12a3+ Pvalb+ DCT1 segments via apoptosis dysregulation.

3.
Iran J Public Health ; 52(1): 147-158, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36824258

RESUMO

Background: We aimed to determine whether NLRP3 inflammasomes in peripheral blood mononuclear cells (PBMC) were associated with carotid plaque instability in carotid atherosclerosis patients. Methods: Consecutive 38 carotid atherosclerosis with vulnerable plaques, 22 carotid atherosclerosis with stable plaques, and 40 healthy subjects with no carotid or coronary artery stenosis were enrolled. They were referred to the Second Hospital of Dalian Medical University from 2013-2019. Carotid plaques were evaluated by modified plaque vulnerability risk score (MPVRS) and pathological assessment. The mRNA and protein expression of NLRP3 inflammasome components in PBMC were determined by quantitative real time PCR and Western blot analysis or ELISA. Results: When consecutive study subjects undergoing carotid endarterectomy were divided into stable (≤4) and unstable (>4) plaque groups according to the MPVRS, the unstable plaque group had significantly raised mRNA and protein expression of NLRP3 inflammasome components in PBMC as compared with the stable plaque group and healthy subject group. Furthermore, subjects with higher NLRP3 protein expression in PBMC had greater incidence of cerebrovascular events. Conclusion: Increased NLRP3 inflammasome components in PBMC is associated with instability of human carotid atherosclerotic plaques, suggesting NLRP3 inflammasome as a potential biomarker for monitoring carotid plaque instability.

4.
Exp Anim ; 72(1): 112-122, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36288929

RESUMO

Pyruvate dehydrogenase complex (PDH) is an important complex of three enzymes that transforms pyruvate into acetyl-CoA, subsequently entering the tricarboxylic acid (TCA) cycle to produce ATP and electron donors. As a key regulator of energy and metabolic homeostasis, PDH is considered a potential therapeutic target of many diseases. On the other hand, the relationship between PDH and obesity is not clear. In this study, peripheral blood of Pdha1fl/flLyz2-Cre and C57BL/6 mice fed a high-fat diet (HFD) was collected and subjected to extensive transcriptome sequencing. Differentially expressed genes (DEGs) were identified. Enrichment of functions and signaling pathways analyses were performed based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the genes selected from RNA sequencing (RNA-seq). Eventually, we found that Pdha1fl/flLyz2-Cre mice were more susceptible to HFD-induced obesity. A total of 302 up-regulated genes and 30 down-regulated genes were screened that were differentially expressed between Pdha1fl/flLyz2-Cre mice fed the HFD and the control groups. Furthermore, we verified that significant transcriptional changes in the genes Sgstm1, Ncoa4, Rraga, Slc3a2, Usp15, Gabarapl2, Wipi1, Sh3glb1, Mtmr3, and Cd36 were consistent with the results obtained from RNA-seq analysis. In summary, this study preliminarily established that there is a close relationship between Pdha1 and obesity and revealed the possible downstream pathways and target genes involved, laying a good foundation for the further study of Pdha1 function in the future.


Assuntos
Dieta Hiperlipídica , Obesidade , Camundongos , Animais , RNA-Seq , Camundongos Endogâmicos C57BL , Obesidade/genética , Transcriptoma
5.
Antioxid Redox Signal ; 38(16-18): 1150-1166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36401517

RESUMO

Aims: Reactive oxygen species are highly reactive molecules generated in different subcellular compartments. Both the dopamine D5 receptor (D5R) and endoplasmic reticulum (ER)-resident peroxiredoxin-4 (PRDX4) play protective roles against oxidative stress. This study is aimed at investigating the interaction between PRDX4 and D5R in regulating oxidative stress in the kidney. Results: Fenoldopam (FEN), a D1R and D5R agonist, increased PRDX4 protein expression, mainly in non-lipid rafts, in D5R-HEK 293 cells. FEN increased the co-immunoprecipitation of D5R and PRDX4 and their colocalization, particularly in the ER. The efficiency of Förster resonance energy transfer was increased with FEN treatment measured with fluorescence lifetime imaging microscopy. Silencing of PRDX4 increased hydrogen peroxide production, impaired the inhibitory effect of FEN on hydrogen peroxide production, and increased the production of interleukin-1ß, tumor necrosis factor (TNF), and caspase-12 in renal cells. Furthermore, in Drd5-/- mice, which are in a state of oxidative stress, renal cortical PRDX4 was decreased whereas interleukin-1ß, TNF, and caspase-12 were increased, relative to their normotensive wild-type Drd5+/+ littermates. Innovation: Our findings demonstrate a novel relationship between D5R and PRDX4 and the consequent effects of this relationship in attenuating hydrogen peroxide production in the ER and the production of proinflammatory cytokines. This study provides the potential for the development of biomarkers and new therapeutics for renal inflammatory disorders, including hypertension. Conclusion: PRDX4 interacts with D5R to decrease oxidative stress and inflammation in renal cells that may have the potential for translational significance. Antioxid. Redox Signal. 38, 1150-1166.


Assuntos
Peróxido de Hidrogênio , Receptores de Dopamina D5 , Camundongos , Humanos , Animais , Receptores de Dopamina D5/metabolismo , Interleucina-1beta/metabolismo , Peróxido de Hidrogênio/metabolismo , Caspase 12/metabolismo , Células HEK293 , Rim/metabolismo , Fenoldopam/metabolismo , Fenoldopam/farmacologia , Estresse Oxidativo , Inflamação/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
6.
PLoS One ; 17(9): e0273313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36129874

RESUMO

HIV-associated nephropathy (HIVAN) impairs functions of both glomeruli and tubules. Attention has been previously focused on the HIVAN glomerulopathy. Tubular injury has drawn increased attention because sodium wasting is common in hospitalized HIV/AIDS patients. We used viral protein R (Vpr)-transgenic mice to investigate the mechanisms whereby Vpr contributes to urinary sodium wasting. In phosphoenolpyruvate carboxykinase promoter-driven Vpr-transgenic mice, in situ hybridization showed that Vpr mRNA was expressed in all nephron segments, including the distal convoluted tubule. Vpr-transgenic mice, compared with wild-type littermates, markedly increased urinary sodium excretion, despite similar plasma renin activity and aldosterone levels. Kidneys from Vpr-transgenic mice also markedly reduced protein abundance of the Na+-Cl- cotransporter (NCC), while mineralocorticoid receptor (MR) protein expression level was unchanged. In African green monkey kidney cells, Vpr abrogated the aldosterone-mediated stimulation of MR transcriptional activity. Gene expression of Slc12a3 (NCC) in Vpr-transgenic mice was significantly lower compared with wild-type mice, assessed by both qRT-PCR and RNAScope in situ hybridization analysis. Chromatin immunoprecipitation assays identified multiple MR response elements (MRE), located from 5 kb upstream of the transcription start site and extending to the third exon of the SLC12A3 gene. Mutation of MRE and SP1 sites in the SLC12A3 promoter region abrogated the transcriptional responses to aldosterone and Vpr, indicating that functional MRE and SP1 are required for the SLC12A3 gene suppression in response to Vpr. Thus, Vpr attenuates MR transcriptional activity and inhibits Slc12a3 transcription in the distal convoluted tubule and contributes to salt wasting in Vpr-transgenic mice.


Assuntos
Produtos do Gene vpr , HIV-1 , Aldosterona/metabolismo , Aldosterona/farmacologia , Animais , Chlorocebus aethiops , Produtos do Gene vpr/metabolismo , HIV-1/genética , Túbulos Renais Distais/metabolismo , Camundongos , Camundongos Transgênicos , Fosfoenolpiruvato , RNA Mensageiro/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Renina/metabolismo , Sódio/metabolismo , Cloreto de Sódio/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Tiazidas
7.
Front Pharmacol ; 12: 670076, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017260

RESUMO

Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is comprised of central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels, low high-density lipoprotein blood levels), and increased blood pressure. Oxidative stress, caused by the imbalance between pro-oxidant and endogenous antioxidant systems, is the primary pathological basis of MetS. The major sources of reactive oxygen species (ROS) associated with MetS are nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases and mitochondria. In this review, we summarize the current knowledge regarding the generation of ROS from NADPH oxidases and mitochondria, discuss the NADPH oxidase- and mitochondria-derived ROS signaling and pathophysiological effects, and the interplay between these two major sources of ROS, which leads to chronic inflammation, adipocyte proliferation, insulin resistance, and other metabolic abnormalities. The mechanisms linking MetS and chronic kidney disease are not well known. The role of NADPH oxidases and mitochondria in renal injury in the setting of MetS, particularly the influence of the pyruvate dehydrogenase complex in oxidative stress, inflammation, and subsequent renal injury, is highlighted. Understanding the molecular mechanism(s) underlying MetS may lead to novel therapeutic approaches by targeting the pyruvate dehydrogenase complex in MetS and prevent its sequelae of chronic cardiovascular and renal diseases.

8.
Hypertens Res ; 44(6): 628-641, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33820956

RESUMO

Overproduction of reactive oxygen species (ROS) plays an important role in the pathogenesis of hypertension. The dopamine D5 receptor (D5R) is known to decrease ROS production, but the mechanism is not completely understood. In HEK293 cells overexpressing D5R, fenoldopam, an agonist of the two D1-like receptors, D1R and D5R, decreased the production of mitochondria-derived ROS (mito-ROS). The fenoldopam-mediated decrease in mito-ROS production was mimicked by Sp-cAMPS but blocked by Rp-cAMPS. In human renal proximal tubule cells with DRD1 gene silencing to eliminate the confounding effect of D1R, fenoldopam still decreased mito-ROS production. By contrast, Sch23390, a D1R and D5R antagonist, increased mito-ROS production in the absence of D1R, D5R is constitutively active. The fenoldopam-mediated inhibition of mito-ROS production may have been related to autophagy because fenoldopam increased the expression of the autophagy hallmark proteins, autophagy protein 5 (ATG5), and the microtubule-associated protein 1 light chain (LC)3-II. In the presence of chloroquine or spautin-1, inhibitors of autophagy, fenoldopam further increased ATG5 and LC3-II expression, indicating an important role of D5R in the positive regulation of autophagy. However, when autophagy was inhibited, fenoldopam was unable to inhibit ROS production. Indeed, the levels of these autophagy hallmark proteins were decreased in the kidney cortices of Drd5-/- mice. Moreover, ROS production was increased in mitochondria isolated from the kidney cortices of Drd5-/- mice, relative to Drd5+/+ littermates. In conclusion, D5R-mediated activation of autophagy plays a role in the D5R-mediated inhibition of mito-ROS production in the kidneys.


Assuntos
Mitocôndrias , Espécies Reativas de Oxigênio , Receptores de Dopamina D5 , Animais , Autofagia , AMP Cíclico/metabolismo , Fenoldopam , Células HEK293 , Humanos , Rim/metabolismo , Camundongos , Mitocôndrias/metabolismo , Receptores de Dopamina D5/metabolismo
9.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652569

RESUMO

The SNX-PXA-RGS-PXC subfamily of sorting nexins (SNXs) belongs to the superfamily of SNX proteins. SNXs are characterized by the presence of a common phox-homology (PX) domain, along with other functional domains that play versatile roles in cellular signaling and membrane trafficking. In addition to the PX domain, the SNX-PXA-RGS-PXC subfamily, except for SNX19, contains a unique RGS (regulators of G protein signaling) domain that serves as GTPase activating proteins (GAPs), which accelerates GTP hydrolysis on the G protein α subunit, resulting in termination of G protein-coupled receptor (GPCR) signaling. Moreover, the PX domain selectively interacts with phosphatidylinositol-3-phosphate and other phosphoinositides found in endosomal membranes, while also associating with various intracellular proteins. Although SNX19 lacks an RGS domain, all members of the SNX-PXA-RGS-PXC subfamily serve as dual regulators of receptor cargo signaling and endosomal trafficking. This review discusses the known and proposed functions of the SNX-PXA-RGS-PXC subfamily and how it participates in receptor signaling (both GPCR and non-GPCR) and endosomal-based membrane trafficking. Furthermore, we discuss the difference of this subfamily of SNXs from other subfamilies, such as SNX-BAR nexins (Bin-Amphiphysin-Rvs) that are associated with retromer or other retrieval complexes for the regulation of receptor signaling and membrane trafficking. Emerging evidence has shown that the dysregulation and malfunction of this subfamily of sorting nexins lead to various pathophysiological processes and disorders, including hypertension.


Assuntos
Endossomos/metabolismo , Hipertensão/metabolismo , Membranas Intracelulares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Nexinas de Classificação/metabolismo , Animais , Humanos , Transporte Proteico
10.
BMC Nephrol ; 21(1): 270, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660446

RESUMO

Chronic kidney disease (CKD) is characterized by inflammation, injury and fibrosis. Dysregulated innate immune responses mediated by macrophages play critical roles in progressive renal injury. The differentiation and polarization of macrophages into pro-inflammatory 'M1' and anti-inflammatory 'M2' states represent the two extreme maturation programs of macrophages during tissue injury. However, the effects of macrophage polarization on the pathogenesis of CKD are not fully understood. In this review, we discuss the innate immune mechanisms underlying macrophage polarization and the role of macrophage polarization in the initiation, progression, resolution and recurrence of CKD. Macrophage activation and polarization are initiated through recognition of conserved endogenous and exogenous molecular motifs by pattern recognition receptors, chiefly, Toll-like receptors (TLRs), which are located on the cell surface and in endosomes, and NLR inflammasomes, which are positioned in the cytosol. Recent data suggest that genetic variants of the innate immune molecule apolipoprotein L1 (APOL1) that are associated with increased CKD prevalence in people of African descent, mediate an atypical M1 macrophage polarization. Manipulation of macrophage polarization may offer novel strategies to address dysregulated immunometabolism and may provide a complementary approach along with current podocentric treatment for glomerular diseases.


Assuntos
Inflamação/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Insuficiência Renal Crônica/imunologia , Alarminas , Apolipoproteína L1/genética , Diferenciação Celular/imunologia , Quimiocina CCL2/imunologia , Humanos , Imunidade Inata , Inflamassomos/imunologia , Macrófagos/classificação , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Moléculas com Motivos Associados a Patógenos , Insuficiência Renal Crônica/genética , Receptores Toll-Like/imunologia
11.
FASEB J ; 34(5): 6999-7017, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32259353

RESUMO

Effective receptor signaling is anchored on the preferential localization of the receptor in lipid rafts, which are plasma membrane platforms replete with cholesterol and sphingolipids. We hypothesized that the dopamine D1 receptor (D1 R) contains structural features that allow it to reside in lipid rafts for its activity. Mutation of C347 palmitoylation site and Y218 of a newly identified Cholesterol Recognition Amino Acid Consensus motif resulted in the exclusion of D1 R from lipid rafts, blunted cAMP response, impaired sodium transport, and increased oxidative stress in renal proximal tubule cells (RPTCs). Kidney-restricted silencing of Drd1 in C57BL/6J mice increased blood pressure (BP) that was normalized by renal tubule-restricted rescue with D1 R-wild-type but not the mutant D1 R 347A that lacks a palmitoylation site. Kidney-restricted disruption of lipid rafts by ß-MCD jettisoned the D1 R from the brush border, decreased sodium excretion, and increased oxidative stress and BP in C57BL/6J mice. Deletion of the PX domain of the novel D1 R-binding partner sorting nexin 19 (SNX19) resulted in D1 R partitioning solely to non-raft domains, while silencing of SNX19 impaired D1 R function in RPTCs. Kidney-restricted silencing of Snx19 resulted in hypertension in C57BL/6J mice. Our results highlight the essential role of lipid rafts for effective D1 R signaling.


Assuntos
Rim/metabolismo , Microdomínios da Membrana/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Sítios de Ligação/genética , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Células Cultivadas , AMP Cíclico/metabolismo , Inativação Gênica , Humanos , Túbulos Renais Proximais/metabolismo , Lipoilação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Estresse Oxidativo , Receptores de Dopamina D1/deficiência , Receptores de Dopamina D1/genética , Sódio/metabolismo
12.
Am J Physiol Renal Physiol ; 315(1): F140-F150, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29357411

RESUMO

Apolipoprotein L1 ( ApoL1) genetic variants are strongly associated with kidney diseases. We investigated the role of ApoL1 variants in monocyte differentiation and eicosanoid production in macrophages, as activated tissue macrophages in kidney might contribute to kidney injury. In human monocyte THP-1 cells, transient overexpression of ApoL1 (G0, G1, G2) by transfection resulted in a 5- to 11-fold increase in CD14 and CD68 gene expression, similar to that seen with phorbol-12-myristate acetate treatment. All ApoL1 variants caused monocytes to differentiate into atypical M1 macrophages with marked increase in M1 markers CD80, TNF, IL1B, and IL6 and modest increase in the M2 marker CD163 compared with control cells. ApoL1-G1 transfection induced additional CD206 and TGFB1 expression, and ApoL1-G2 transfection induced additional CD204 and TGFB1 expression. Gene expression of prostaglandin E2 (PGE2) synthase and thromboxane synthase and both gene and protein expression of cyclooxygenase-2 (COX-2) were increased by ApoL1-G1 and -G2 variants compared with -G0 transfection. Higher levels of PGE2 and thromboxane B2, a stable metabolite of thromboxane A2, and transforming growth factor (TGF)-ß1 were released into the supernatant of cultured THP-1 cells transfected with ApoL1-G1 and -G2, but not -G0. The increase in PGE2, thromboxane B2, and TGF-ß1 was inhibited by COX-2-specific inhibitor CAY10404 but not by COX-1-specific inhibitor SC-560. These results demonstrate a novel role of ApoL1 variants in the regulation of monocyte differentiation and eicosanoid metabolism, which could modify the immune response and promote inflammatory signaling within the local targeted organs and tissues including the kidney.


Assuntos
Apolipoproteína L1/metabolismo , Diferenciação Celular , Ciclo-Oxigenase 2/metabolismo , Eicosanoides/metabolismo , Variação Genética , Ativação de Macrófagos , Macrófagos/enzimologia , Macrófagos/patologia , Monócitos/enzimologia , Apolipoproteína L1/genética , Biomarcadores/metabolismo , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Humanos , Monócitos/patologia , Fenótipo , Transdução de Sinais , Células THP-1 , Tromboxano B2/metabolismo , Transfecção , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima
13.
Redox Biol ; 2: 570-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24688893

RESUMO

NADPH oxidases are the major sources of reactive oxygen species in cardiovascular, neural, and kidney cells. The NADPH oxidase 5 (NOX5) gene is present in humans but not rodents. Because Nox isoforms in renal proximal tubules (RPTs) are involved in the pathogenesis of hypertension, we tested the hypothesis that NOX5 is differentially expressed in RPT cells from normotensive (NT) and hypertensive subjects (HT). We found that NOX5 mRNA, total NOX5 protein, and apical membrane NOX5 protein were 4.2±0.7-fold, 5.2±0.7-fold, and 2.8±0.5-fold greater in HT than NT. Basal total NADPH oxidase activity was 4.5±0.2-fold and basal NOX5 activity in NOX5 immunoprecipitates was 6.2±0.2-fold greater in HT than NT (P=<0.001, n=6-14/group). Ionomycin increased total NOX and NOX5 activities in RPT cells from HT (P<0.01, n=4, ANOVA), effects that were abrogated by pre-treatment of the RPT cells with diphenylene-iodonium or superoxide dismutase. Silencing NOX5 using NOX5-siRNA decreased NADPH oxidase activity (-45.1±3.2% vs. mock-siRNA, n=6-8) in HT. D1-like receptor stimulation decreased NADPH oxidase activity to a greater extent in NT (-32.5±1.8%) than HT (-14.8±1.8). In contrast to the marked increase in expression and activity of NOX5 in HT, NOX1 mRNA and protein were minimally increased in HT, relative to NT; total NOX2 and NOX4 proteins were not different between HT and NT, while the increase in apical RPT cell membrane NOX1, NOX2, and NOX4 proteins in HT, relative to NT, was much less than those observed with NOX5. Thus, we demonstrate, for the first time, that NOX5 is expressed in human RPT cells and to greater extent than the other Nox isoforms in HT than NT. We suggest that the increased expression of NOX5, which may be responsible for the increased oxidative stress in RPT cells in human essential hypertension, is caused, in part, by a defective renal dopaminergic system.


Assuntos
Hipertensão/enzimologia , Túbulos Renais Proximais/enzimologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Células Cultivadas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Ionomicina/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , Túbulos Renais Proximais/citologia , NADPH Oxidase 5 , Oniocompostos/farmacologia , Estresse Oxidativo
14.
FASEB J ; 28(3): 1422-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24308971

RESUMO

The dopamine D3 receptor (D3R) is crucial in the regulation of blood pressure and sodium balance, in that Drd3 gene ablation in mice results in hypertension and failure to excrete a dietary salt load. The mechanism responsible for the renal sodium retention in these mice is largely unknown. We now offer and describe a novel mechanism by which D3R decreases sodium transport in the long term by inhibiting the deubiquitinylating activity of ubiquitin-specific peptidase 48 (USP48), thereby promoting Na(+)-H(+) exchanger (NHE)-3 degradation. We found that stimulation with the D3R-specific agonist PD128907 (1 µM, 30 min) promoted the interaction and colocalization among D3R, NHE3, and USP48; inhibited USP48 activity (-35±6%, vs. vehicle), resulting in increased ubiquitinylated NHE3 (+140±10%); and decreased NHE3 expression (-50±9%) in human renal proximal tubule cells (hRPTCs). USP48 silencing decreased NHE3's half-life (USP48 siRNA t1/2=6.1 h vs. vehicle t1/2=12.9 h), whereas overexpression of USP48 increased NHE3 half-life (t1/2=21.8 h), indicating that USP48 protects NHE3 from degradation via deubiquitinylation. USP48 accounted for ∼30% of the total deubiquitinylating activity in these cells. Extending our studies in vivo, we found that pharmacologic blockade of D3R via the D3R-specific antagonist GR103691 (1 µg/kg/min, 4 d) in C57Bl/6J mice increased renal NHE3 expression (+310±15%, vs. vehicle), whereas an innovative kidney-restricted Usp48 silencing via siRNA (3 µg/d, 7 d) increased ubiquitinylated NHE3 (+250±30%, vs. controls), decreased total NHE3 (-23±2%), and lowered blood pressure (-24±2 mm Hg), compared with that in control mice that received either the vehicle or nonsilencing siRNA. Our data demonstrate a crucial role for the dynamic interaction between D3R and USP48 in the regulation of NHE3 expression and function.


Assuntos
Endopeptidases/fisiologia , Receptores de Dopamina D3/fisiologia , Trocadores de Sódio-Hidrogênio/metabolismo , Sequência de Bases , Células Cultivadas , Primers do DNA , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/fisiologia , Reação em Cadeia da Polimerase , Proteólise , Trocador 3 de Sódio-Hidrogênio , Técnicas do Sistema de Duplo-Híbrido
15.
Kidney Int ; 85(3): 561-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24132210

RESUMO

Renal proximal tubule cells from spontaneously hypertensive rats (SHR), compared with normotensive Wistar-Kyoto rats (WKY), have increased oxidative stress. The contribution of mitochondrial oxidative phosphorylation to the subsequent hypertensive phenotype remains unclear. We found that renal proximal tubule cells from SHR, relative to WKY, had significantly higher basal oxygen consumption rates, adenosine triphosphate synthesis-linked oxygen consumption rates, and maximum and reserve respiration. These bioenergetic parameters indicated increased mitochondrial function in renal proximal tubule cells from SHR compared with WKY. Pyruvate dehydrogenase complex activity was consistently higher in both renal proximal tubule cells and cortical homogenates from SHR than those from WKY. Treatment for 6 days with dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase, significantly increased renal pyruvate dehydrogenase complex activity and systolic blood pressure in 3-week-old WKY and SHR. Therefore, mitochondrial oxidative phosphorylation is higher in renal proximal tubule cells from SHR compared with WKY. Thus, the pyruvate dehydrogenase complex is a determinant of increased mitochondrial metabolism that could be a causal contributor to the hypertension in SHR.


Assuntos
Hipertensão/metabolismo , Túbulos Renais Proximais/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Pressão Sanguínea , Células Cultivadas , Glicólise , Túbulos Renais Proximais/citologia , Masculino , Complexo Piruvato Desidrogenase/metabolismo , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
16.
Mol Endocrinol ; 27(9): 1564-76, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23842279

RESUMO

HIV infection and its therapy are associated with disorders of lipid metabolism and bioenergetics. Previous work has suggested that viral protein R (Vpr) may contribute to the development of lipodystrophy and insulin resistance observed in HIV-1-infected patients. In adipocytes, Vpr suppresses mRNA expression of peroxisomal proliferator-activating receptor-γ (PPARγ)-responsive genes and inhibits differentiation. We investigated whether Vpr might interact with PPARß/δ and influence its transcriptional activity. In the presence of PPARß/δ, Vpr induced a 3.3-fold increase in PPAR response element-driven transcriptional activity, a 1.9-fold increase in pyruvate dehydrogenase kinase 4 (PDK4) protein expression, and a 1.6-fold increase in the phosphorylated pyruvate dehydrogenase subunit E1α leading to a 47% decrease in the activity of the pyruvate dehydrogenase complex in HepG2 cells. PPARß/δ knockdown attenuated Vpr-induced enhancement of endogenous PPARß/δ-responsive PDK4 mRNA expression. Vpr induced a 1.3-fold increase in mRNA expression of both carnitine palmitoyltransferase I (CPT1) and acetyl-coenzyme A acyltransferase 2 (ACAA2) and doubled the activity of ß-hydroxylacyl coenzyme A dehydrogenase (HADH). Vpr physically interacted with the ligand-binding domain of PPARß/δ in vitro and in vivo. Consistent with a role in energy expenditure, Vpr increased state-3 respiration in isolated mitochondria (1.16-fold) and basal oxygen consumption rate in intact HepG2 cells (1.2-fold) in an etomoxir-sensitive manner, indicating that the oxygen consumption rate increase is ß-oxidation-dependent. The effects of Vpr on PPAR response element activation, pyruvate dehydrogenase complex activity, and ß-oxidation were reversed by specific PPARß/δ antagonists. These results support the hypothesis that Vpr contributes to impaired energy metabolism and increased energy expenditure in HIV patients.


Assuntos
HIV-1/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Proteínas Quinases/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Transcrição Gênica , Produtos do Gene vpr do Vírus da Imunodeficiência Humana/metabolismo , 3-Hidroxiacil-CoA Desidrogenases , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas Mutantes/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , PPAR delta/agonistas , PPAR beta/agonistas , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tiazóis/farmacologia , Transfecção
17.
FASEB J ; 27(5): 1808-19, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23195037

RESUMO

The D1 dopamine receptor (D1R) is widely expressed in the kidney and plays a crucial role in blood pressure regulation. Although much is known about D1R desensitization, especially through G-protein-coupled receptor kinase 4 (GRK4), comparatively little is known about other aspects of D1R trafficking and the proteins involved in the process. We now report the discovery of a dynamic interaction between sorting nexin 5 (SNX5), a component of the mammalian retromer, and D1R in human renal epithelial cells. We show that internalization of agonist-activated D1R is regulated by both SNX5 and GRK4, and that SNX5 is critical to the recycling of the receptor to the plasma membrane. SNX5 depletion increases agonist-activated D1R phosphorylation (>50% at basal condition), prevents D1R internalization and cAMP response, and delays receptor recycling compared to mock siRNA-transfected controls. Moreover, renal restricted subcapsular infusion of Snx5-specific siRNA (vs. mock siRNA) decreases sodium excretion (Δ=-0.2±0.005 mEq/mg creatinine) and further elevates the systolic blood pressure (Δ=48±5 mm Hg) in spontaneously hypertensive rats, indicating that SNX5 depletion impairs renal D1R function. These studies demonstrate an essential role for SNX5 in regulating D1R function, which may have important diagnostic, prognostic, and therapeutic implications in the management of essential hypertension.


Assuntos
Quinase 4 de Receptor Acoplado a Proteína G/fisiologia , Hipertensão/fisiopatologia , Rim/fisiologia , Receptores de Dopamina D1/fisiologia , Nexinas de Classificação/fisiologia , Animais , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Transporte Proteico/fisiologia , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Endogâmicos SHR
18.
J Biol Chem ; 288(1): 152-63, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23152498

RESUMO

The peripheral dopaminergic system plays a crucial role in blood pressure regulation through its actions on renal hemodynamics and epithelial ion transport. The dopamine D5 receptor (D(5)R) interacts with sorting nexin 1 (SNX1), a protein involved in receptor retrieval from the trans-Golgi network. In this report, we elucidated the spatial, temporal, and functional significance of this interaction in human renal proximal tubule cells and HEK293 cells stably expressing human D(5)R and in mice. Silencing of SNX1 expression via RNAi resulted in the failure of D(5)R to internalize and bind GTP, blunting of the agonist-induced increase in cAMP production and decrease in sodium transport, and up-regulation of angiotensin II receptor expression, of which expression was previously shown to be negatively regulated by D(5)R. Moreover, siRNA-mediated depletion of renal SNX1 in C57BL/6J and BALB/cJ mice resulted in increased blood pressure and blunted natriuretic response to agonist in salt-loaded BALB/cJ mice. These data demonstrate a crucial role for SNX1 in D(5)R trafficking and that SNX1 depletion results in D(5)R dysfunction and thus may represent a novel mechanism for the pathogenesis of essential hypertension.


Assuntos
Regulação da Expressão Gênica , Hipertensão/metabolismo , Túbulos Renais Proximais/citologia , Receptores de Dopamina D5/metabolismo , Nexinas de Classificação/fisiologia , Animais , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Inativação Gênica , Guanosina Trifosfato/química , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Interferência de RNA , Receptores de Dopamina D5/genética , Nexinas de Classificação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...